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V&YV = Verification and Validation

Validation

* Is my model relevant to studied physical phenomena?
— Reliable experimental data?
— Correct analytic theory?

Verification

* Is my model implemented correctly?
— Correct numerical procedure?
— No bugs in code implementation?

In many cases we cannot address validation before we have results
from the model so verification comes first
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A lot can go wrong in numerical model development...

Flowchart: Computer Model Development
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What can we do to verify a
nonlinear time-evolution code like BOUT++?

The code implements numerical solution of time-evolution equation
which is a large, complicated, nonlinear function

a — — —
=~ f=F
atf (f)

For verification, usual simplification step is linearization

d ]; OF ];

ot~ of
The time-evolution solution is the fastest-growing (or least damped)
eigenmode of the matrix M

—ia)f = Mf

Eigenvalue solution is a natural choice for independent cross-check of

a time evolution code .
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2DX eigenvalue code* provides new capabilities for
edge/SOL analysis

Solves linearized eigenvalue problem in R-Z plane for each toroidal
mode number n.

Inputs actual magnetic divertor geometry for edge and SOL
— experimental or analytical input profiles of n,, T, T; and E,

Uses a specialized equation parser to input an arbitrary fluid physics
model

— ideal MHD, drift-resistive MHD, full 6-field fluid model etc.
Sparse matrix package SLEPc enables high resolution

Originally devised primarily as a linear benchmark tool for nonlinear
codes

Applications for analysis of experiments (QC-mode, edge marginal
stability, density limit)

2DX is a copyrighted code developed by Lodestar Research Corp. (in
collaboration with LLNL)

*D. A. Baver, J. R. Myra, and M.V. Umansky, Comp. Phys. Comm. 182, 1610, (2011)




2DX eigenvalue code* provides new capabilities for
edge/SOL analysis

« Transform to field-following coordinates
(more efficient for field-aligned functions)

0
0D = 0D (P,0)exp| inC —in [dOV
Sl
* Numerically solve for the envelope 6®¢

)
QY | N N /7 ’
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» Periodicity invoked by phase-shift-periodic boundary condition

27
8P ¢ (,27) = 8P (,0)e> ™14 q= 1 f dov
27 0

- Equivalent to BOUT/BOUT++ formulation for linear single toroidal
mode BUT
- much more efficient (a few orders of magnitude)
- allows finding subdominant modes
- allows finding modes near specific complex w
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Large collection of verification test problems has been
produced with 2DX for edge plasma community

http://www.lodestar.com/research/vnv/

e A. Table of benchmark comparisons

e B. Resistive Ballooning

e C. Resistive Drift

e D. Slab Ion Temperature Gradient (ITG)

e E. Geodesic Acoustic Mode (GAM)

e F Ideal Kink

e G. Parallel Kelvin Helmholtz

e H. Toroidal Ion Temperature Gradient (ITG)

e I. Edee Localized Mode (ELM)
e J. Kinetic Resistive Ballooning

Each test problem has detailed description, cross-checked against other
codes and asymptotic analytic solutions
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Large collection of verification test problems has been
produced with 2DX for edge plasma community

http://www.lodestar.com/research/vnv/

e A. Table of benchmark comparisons

e B. Resistive Ballooning

e C. Resistive Drift

e D. Slab Ion Temperature Gradient (ITG)

e E. Geodesic Acoustic Mode (GAM)

e F Ideal Kink

e G. Parallel Kelvin Helmholtz

e H. Toroidal Ion Temperature Gradient (ITG)
== o 1. Edge Localized Mode (ELM)

e J. Kinetic Resistive Ballooning

Each test problem has detailed description, cross-checked against other
codes and asymptotic analytic solutions
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Using 2DX for verification: ELM benchmark

* Model equations  Geometry description

2B B? J
YV 66 = —=CrndT; — ~—0VAsA +i —6A8 “

~6T; = z 5¢6 T;

((52 > 0A = —nuV,0¢

Cr=b x k-V =—KkgRB,0; + i(knky — Kgky)

V% = —k — yB(ky — i0,RB,)(1/3B)(ky — iRB,0,)
0|Q = BV (Q/B)

V) =19y

* Plasma profiles

ion E
o Teloginear b




Using 2DX for verification: ELM benchmark

* Dispersion relation
(plots and tables)

cbmi18_dens8

2DX each data point ~0.1 CPU-hour
BOUT++ 5,000 CPU-hours
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Using 2DX for verification: ELM benchmark

* Grid convergence
studies results
(plots and tables)

150 200 300 500 700 1000

Re(7)/wa 2DX (nx=512) | Re(y)/wa 2DX (nx=256) | ~/wa BOUT++ (nx=512) | 7/ws BOUT++ (nx=256) nx

.0865383 0864301 0894333 0916790

182753 182911 194466 195453

.248903 .249047 .250183 .254074

.287606 287774 .292470 .295150

.329408 .329749 .330025 .348405

.350433 351111 .361835 .383246

.362255 .363654 .386312 .403599

.369492 .372193 .398018 426154

374249 .378379 .410997 .443173

377585 .381714 .419887 .453644

.380091 .385232 .427058 .460371

.382127 .386651 .430449 470444
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Using 2DX for validation:
Understanding linear stability of C-Mod EDA plasma

From Myra et al, APS 2011 talk

X-pt geometry supports two RB branches

» 2 fastest resistive ballooning branches are nearly degenerate
* n =20 mode is in experimental range
— C-Mod:n~ 17 to 21

— spatially confined by X-pts
(outboard side)

» BUT no spectral peak near n =20

%

C-Mod QC
Alcator
)(yﬂod Lodestar
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Using 2DX for validation:
Understanding linear stability of C-Mod EDA plasma

From Myra et al, APS 2011 talk

Ion diamagnetism plateaus growth rates for n > 15

BUT still no strong spectral peak
near n = 20
— strength of peak is somewhat
sensitive to n vs. T; profile
(including SOL)
f,—»o ~—15 kHz (ion direction) in
plasma frame

only fastest modes shown

e (C-Mod data:

— f~55to 70 kHz, e-direction (lab
frame), possibly i-direction
(plasma frame)

— n~17t021

Alcator
)Cyﬂod Lodestar
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Using 2DX for validation:
Understanding linear stability of C-Mod EDA plasma

From Myra et al, APS 2011 talk

Drift wave physics: complex spectrum with y oc n

RDBIEK = more complete model ¥ gf
including resistive ballooning, ion st
diamagnetism, drift waves, sheared
Er, and KH physics

2 fastest modes shown

4_
3_

No spectral peak near n =20 g

f -0 ~ 200+ kHz (electron direction)

-
in lab frame

— probably sensitive to profile
uncertainties

No linear modes with strong peak
growth rates in the relevant range of
wave-numbers have emerged yet.

Alcator
)Cyﬂod Lodestar
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Ongoing development of new capabilities
2DX =» Arbiter

« Arbitrary Topology Equation Reader (ArbiTER)

« Target applications areas
— Full linear kinetic or gyrokinetic models.
— Non-axisymmetric geometries (e.g., stellarators)

— Topologies beyond simple X-point (e.g., snowflake divertors)

 New capabilities (under development) Q
— Multiple dimensions

/

Arbitrary connectivity

Variable number of dimensions

Finite elements and unstructured grids
Integrated parallelization

%
g .
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Using IDL built-in tools for eigenvalue analysis
Case study: resistive drift instability

Linearized equations for n;, v, |, ® Nonlinear eigenvalue problem for ¢(r)
in cylindrical annular geometry
C,(r,w)e"+C,(r,w)¢p’+Cy(r,w)p=0

19,N+ bo X VJ_¢O' VN=—b0 X VJ_¢ VNO_NOVHUHca

Cy(r)@" + Ci(r)¢" + Cy(r) =0, (A4)

TeO
v +bg XV -Vuop.=—u—V N+ uV,d—-v,v,.,
Vie+bg XV, dy-Voe=—pn N ! uVid—vue o) = (v i), (A3)

(A3)

1 1
Cy(r) = (v, - i@)(— I —+ ¢0)\N) + zme qSO (A6)
NoViwje==V, - (Nod,V  p+ NV | ¢, r Ly,

+bo X Vg VNGV | ) [ om L1
+by XV, - VNV | &) Co(r) = (v - lw)[— 2t 7\N¢6<; - L_,,> + ()\N¢(’,)']
+by XV, - V(NV , dbp) (A7)
+bo X V- VNV )

+NovinV 1 o+ NovinV 1+ Nv,V | ).

lmo[% réo—r’ey - —(rNo¢0)’ ¢8] (A8)

+ik\, +1 1 by
ik v+lm0r)\1v¢o¢o, (A9)

Teo Mg

1-

o
N7, @) = ik O

T’

O 0

Ve—tw+lkﬁ,u,—f
@

tk",u,+ . L,,(Ve i®)

&(v, - i@) + ik uT,y

A7, @) =

Can be solved by the shooting method

18

From Popovich et al., Phys. Plasmas 17, 102107, 2010 ——
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Using IDL built-in tools for eigenvalue analysis
Case study: resistive drift instability

Nonlinear eigenvalue problem for «¢(r) Scan of residual A in complex w plane

Cz(r;w)q’""'c1(r:w)¢’+co(r;w)q)=0

RDWES in cylinder

4.65%x107° 9.30x107°
Re(w/wci)

Shooting method in a action

ion E
o Teloginear b




Using IDL built-in tools for eigenvalue analysis
Case study: resistive drift instability

Linearized equations for n;, v, ®
in cylindrical annular geometry

19,N+ bo X VJ_¢O' VN=—b0 X VJ_¢ VNO_NOVHUHca

TeO
01 +bg X'V ¢y Vo=~ :U'FVHN"' uV - v,
0

(A3)

NoVije==V, - (Nod,V ¢+ INV Ly
+bo X V_ - VNGV L )
+bo X V_ - VNGV @)
+bo X V ¢ V(NGV L ¢h)
+bo X V- VNV )
+NovinV 1 o+ NovinV 1+ Nv,V | ).

Solve it as a 3xN size linear algebra
eigenvalue problem

-a bit more programming work

BUT

-much more robust procedure
-can use standard packages
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Eigenvalue solution is used routinely
to verify BOUT++ time-evolution results

mg me
10 20 30 40 50 60 70 10 20 30 40 50 60 70
—&— B=004T —a— B=004T
-e- B=0.08T]|| B -e- B=0.08T
& B=012T or i “ |4 B=0.12T]]

From Popovich et al., Phys. Plasmas 17, 102107, 2010
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Suggested exercises for practice with eigenvalue solution

On hopper do: more ~umansky/BOUT_Workshop 2013/readme

Copy to your area on hopper and experiment with

— shooting method example

— built-in eigenvalue solver example
Experiment with the codes using instructions in README files
Try to understand the code in both examples

Implement (in IDL, Python, or MATLAB) your own solution and find
eigenvalues and eigenmodes for

acoustic wave equations using
— shooting method
— built-in linear eigenvalue
solver routine

n__ou
ot 0x

du__on
| ot 0x
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